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A wedge-shaped punch with included angle close to rr is pressed onto an elastic half-plane by a centrally 

applied vertical force P; the contact area, divided into a frictional region and an adhesive region, is either 

known in advance (problem la) or has to be determined (problem lb). Two-dimensional contact is 

investigated for an elastic wedge-shaped punch pressed down by a vertical force P, a horizontal force T and 

a couple of moment M (problem 2); the punch extends beyond the apex of the wedge and is flat-faced; the 

contact area is divided into an inner adhesive region and two outer regions of Coulomb friction. 

An analytical solution, accurate to within any prescribed limits, will be presented for these problems, thus 

generalizing the solution described in [l]; the method used is that employed in [2], where the problem is 

reduced to a Riemann vector problem for two pairs of functions (problems la, lb) or three pairs (problem 

2), which is then solved. The boundaries of the adhesive and frictional regions will be determined, and in 

problem lb the contact area also. Formulae will be developed for the contact stresses. It will be shown that 

the stresses are continuous across the common boundary of the adhesive and frictional regions. The 

statement made in [3] that when the punch is pressed symmetrically onto the half-plane the ratio A of the 

length 26 of the adhesive region to the length Z&I of the contact region is the same for a flat-faced punch and 

a punch whose profile is described by the function f(x) = A (x 1” (n 2 1) will be disproved. It will be proved 

that if the punch profile is smooth in the vicinity of the point a, then A is uniquely defined by Poisson’s ratio 

Y, the coefficient of friction p and the exponent n; it is independent of the coefficient A and the force P (in 

particular, A in problem lb is independent of the included angle of the punch). 

The introduction of the regions of friction in the contact area for problem 2, enables one not only to 

eliminate oscillation of the contact stresses near the ends of the punch, but also to construct an analytic 

solution of the contact problem for a wedge when the contact shear and normal stresses are unknown (such 

a solution has not been obtained when the punch is fully adhesive). 

The problem of two wedge-shaped elastic bodies in contact with no shear stresses was solved in [4]. 

1. A WEDGE-SHAPED PUNCH 

CONSIDER a wedge-shaped punch, pressed down onto an elastic half-plane (0 < r < CO, - 7r< 0< 0) 
with Poisson’s ratio v and modulus of elasticity E; the punch, with an included angle 2y of nearly r, 
is pressed down by a centrally applied vertical force P. The contact area (0 <r< a, 8 = -n and 
8 = 0) is divided into zones of adhesion (O< r< b, 8 = -IT and 0 = 0) and Coulomb friction 
(b<r<a,e=--Tand8=0) 

Ue =rctgy+S, (0 < r < II, e = 4, 8 = 0) 

4 = 0 (0 < r < b, e = -T, e = 0) 

rre -/me = 0 (b < r < a, 6 = ---IT); ?,a +po, = 0 (b < r < a, 6’ = 0) 
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FIG. 1 

(6, is an additive constant and /L is the coefficient of friction). Outside the contact area the boundary 
of the half-plane is free from stresses. The quantity a is either fixed (problem la-Fig. la) or has to 
be determined (problem lb-Fig. lb). The shear stresses in the adhesive region are too small to 
create slipping: 1 TV ( < p ( a0 1. The normal stresses must be negative. 

Symmetry dictates that problems la, lb reduce to a two-dimensional boundary-value problem for 
a quarter-plane, with boundary conditions 

W lee0 =x1(& (rre +WJe)e=o =x2(r), 

ue b=-n/z = 0, T,e le=-np =o (O<r<=-) 

where xi(r) and $j(r) (j = 1,2) are unknown functions such that 

suPP Xl t Kh 4 9 suPP x1 c 10, bl 
suPP 91 t [b, -x supp J/2 c [a, c-1 

Since the punch is in equilibrium 

[x,(r)dr = - ; 

Denote the Mellin transforms of the unknown functions by 

(1.2) 

1 

%(i> = IXl(W)PS&J, @i(S) = i X2(b)PSdP 
0 0 

@‘1*(S) = ~~l(bp)PSdP, 
(1.3) 

G(S) = j $2(ap)PSdp 
1 1. 

The functions @F (S) are analytic in the domain D’: Re (s) 5 yE (- 1,O) and satisfy the following 
inhomogeneous Riemann matrix problem [2] 

AS+‘@:(S) = Kr (S)@;(S) - K+??+’ tg % 7+;(S) 

(s t l)-%, + @l(s) =&(s)@;(S) - K_ i8+r@p;(s), SEC Re(S)=y 

Kr (S) = K _ + C(K+ tg %A’, &(S)=K+Ctg%nS+C(K_ 

Kt = %(K + I), K = 3 -4V, Vo =V;'Ctgr, h=a-‘b 

which, after factorizing I&,(s), we can write in the form 

(1.4) 

K. [K;(S)] -’ @i(S) = K,+(S)‘-P;(S) - h-S- ’ [K,-(S)] -‘ K1 (S) [a?+(S) + (S + I)-’ Vol 

[K&s)] -I p:(s) + (s + I)-’ Vo] = K,(S)@;(S) - K _ As+ ’ [K;(S)] -’ @‘;(S), S E r 

K&s) = - 
Kgr(--%S) 

K;(s) = 
l-(1 +Hs) K+ 

r(l - % s - a) ’ r(a t 4fr S) ’ Ko 7 - sin 7ra 

K. = ‘,‘y -K2 +, a = 7r-1 arcctg (jlK_K;l) 

Noting that the function 
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o(s) = I+) h-s-- l [KG(s) (s + l)] -l Kr (s’) 

has a pole of first order at s = -1 (ED+), we obtain the following representation in the 
neighbourhood of that point 

o(s),=11o(st 1)-2 +(a, -aJnX)(s+l)-r +0(l), s-t-1 

= -2/,M+vo7+ r@r- n) 

1; =v,n+P(o--%)IK_ -/M+fl-‘[J/(o-%)- +(%)]I 

(I&(X) is the psi-function). Proceeding as in [2], we obtain the following formulae for the solution of 
the Riemann problem (1.4) 

a);($ = [&(S)]-‘&(i) + (K.ik-i(S)]- ‘Kx+‘Z~(s) 

@T(i) = [qs)J-‘K, (i) A-S- ‘z1 (S) + [K;(s)] -‘z,(s) (1.5) 
a;(S) = K ;’ K;(S).72 (S), a:(S) = -vo (S + I)-’ + Ko’(S)z, (i) 

z,(S) = c t (s t 1)-'a2 t q;(S), U2 = ---VOK~‘~?~(% -a) 

Z,(s)=-uo(st I)-2 +(fz&X-a*)(s+1)-’ +e,(s)+\t;(s) 

where C is an arbitrary constant, *g (s), W, (s) are functions analytic in the domains D’ and having 
the form 

*t(s) = E A; 

j=O st2072jTl_l' 
~r;(j)=g Bj 

i=o stlt2j 
(1.6) 

The coefficients A,?, Bj have to be determined; their asymptotic behaviour is described by the 
following estimates [2] 

A,? = 0fi2jjr--Za), A; = o(Bj)= o(hZjj--Z+Za), J + 00 

The functions @: (s) are analytic in D* if and only if the coefficient A,?, Bj satisfy the following 
infinite algebraic system of normal type 

A, = A2 n+2a- ‘6;” ( c - a2 -E AJ 

2nt2ar-1 j=O 2nt2jt2 
) 

Bn = X2”6f, (C t qc6no - ii 
Ai+ 

j=o 2nt2jt3-2a 
) 

A,‘= h2n+3-2uS&, (9” t 5 Ai t !z 
j=O 2nt2jt2 j=O 

(1.7) 

Bi 
2ntZjt3-2a 

) 

where 

9. =-%+‘2~VOK_K;2SeC~ar(3/2 -~)[$(3/2 --a)--$(%)] 

9n = -ao(3 t 2n - 2a)-l t~(9olnA - ar)(3 + 2n - 2(I)-’ 

s o+n = 2K+K,r2(tl ,a) (?lK_?Z!2)-1 

a;,, = zK+K:p(n + %) [nK_r2(n + j/Z -a)]-’ 

i& = 2K+K_ r2(tI + 2 -a) (TK,K$z!~)-’ 

(&?I, is the Kronecker delta). Expressing the unknown coefficients A’, B, successively as 

A; =C’;, +A&, B,, =CB”, +Bnl 

B - ~2~ E b,&i ni - 
j= 0 
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and introducing the notation 

fnO=fno=l, f20= 0, f,i =-a2@+2a- I)-‘, frill =9*&O, f,‘l =qm 

we can express system (1.7) in terms of recurrence relations 

ah=G,f4, bn0i=6inf tu 

Gki =--a,+, ;; 
aj:i,k-i,i 

j= 1 2(llti) 

d,k-l,i?hh th’-2”6klfn: 

(n=O,l,...; k=1,2 ,...; 

, b nkl 
ai’_ 1 , k - j, i 

j= 1 2nt2jtl -ia 

+ 5 ( 
ajLl,k-j,i 

t h1-24b, 
I-l,k-_i,i 

2(n +i) 2n+2jt 1-2~~ 
)I 

j= 1 

i = 0,l) 

We now determine the constant C, the position of the point b and, for problem lb, that of point a. 
By the equilibrium condition for the punch (1.2)) as well as relationships (1.3), (1.5)) (1.6) and 
(1.8), we find 

P C=_L(_ 
1 +a2twl), oj= 2 A; 

= 0, too ZaT‘(ol) 
j= 

0 2((u- 1 -j) (i 1) (1.9) 

The previously unknown position of b is found from the condition that the contact stresses are 
bounded there. We introduce the stress intensity factor as 

Kb = r JF_ o (b - r)‘-V,e t WO)~=O 

or, by (1.5) and an Abelian-type theorem 

6 Q2(A)=aoInX-al 4 E (AjtBj) 
j=O 

which implies the following transcendental equation for A 

sz(h) = 0 (1.10) 

In problem la, when the position of a is known, Eq. (1.10) also determines the quantity b = ha. 
But in problem lb we must also find a from the condition that the normal contact stress ob be 
bounded in the vicinity of a (under this condition the shear stresses will also be bounded, because 
rti = -pa, for b<r<a, 8 = 0). Let 

L, = I f’,“_ o (a - r)%e(r, 0) 

By (1.5) and an Abelian-type theorem, we find 

L, = 21-(‘a4 [p(l - cx)]-‘C 

It follows from the condition L, = 0 and from (1.9) that in problem lb 

C= 0, a = -P[2r(ol) (az + cdl)]-’ 

2. CONTACT STRESSES. ANALYSIS OF THE SOLUTION 

(1.11) 

We shall construct formulae for the contact stresses. Using inverse Mellin transforms in problem 
la, we deduce from (1.5) [in problem lb, C and a are determined from (1. ll)] 
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ue(r,o)=Xl(~)=f,(~)+K;1K-f2(r), O<r<a 

T+e(r, 0) = -/lx&), b < t < a; 7ti (r, 0) = x2@) - PXl @I, 0 < r < b 
-s- 1 

Me = $&$(f) da 12 w 
=LJ_ 22 ($1 

-s- 1 

(:) ds 
27ri r K;(s) b 

(24 
0 

-S-l 

x2@) = & { K&P’z(s) ( ; > ds 
. 

Using the theory of residue and the equality 

2, (L2a - 2jl= X -2j-2a+1(~;j)-14- 

which follows from (1.7), we find that for 0 C r < b 

K- 
I,(i) = -L + - E 

j!A+IMt 
r 2a+Zj-1 

? W- K,K+ j=o W +I) 
(,) 

12(r)= -VOK&K!_)-l - 2K+VO(TK_)-‘h(tja) - 

l 2 w- -- 
KO j= 0 r(ati) 

F(V2 - a +i) r 2j 

KO j=o W ti) 
B/C ;I 

and finally obtain 

2K+Vo . 
Xl(r) = - - lnL-K- $ B,I’(‘/2 -a tj) 

flu. a K,KO j=O W ti) 
( 5 ;‘, O<r<b (2.2) 

Thus, the normal contact stresses at r = 0 have a logarithmic singularity (the same kind of 
singularity is obtained if one considers friction-free contact between a wedge-shaped punch and a 
half-plane [4]). 

Now let b <I < a. We have 

If 1/2<x<.l the function F,(a, b; x) can be calculated using the following transformation formula 
for Gauss’s fu;ction F(a, b; b + 1; x) [5] 

Ii(;) = vg - v071H(r/0)2a-1F.(a, a - ‘A; 3/u’) + 

w- u. cos nar(l - a)r(% t a) 

2c r 2a-1 

t 

r(l -a) 
(I) Cl- 

m=O mtl 

? 
X F,(a,m+ l;-) 

a2 

F,(a, b ; x) = b ?! 
(a)jXj 

j= o (b +j)j! 

(2.3) 

F&r, b; x) = 
r(b +.i)ril -0) + b 
r(b t 1 -a)xb 

2 tb + l -a)i (1 _x)j+~ --o 

a- 1 j=o (2-U)j 

For 2l”b S r < a, we can write 12 (r) in the form 

(b/r) J-la 
f2(r) = - 

KOr(a - 1) 

aOln A - a1 3 
t F,(Z-a, --a;< t g - 

r ) 

A, 
V2 - a 2 vi=0 m+l 

F,(2-a,mtl;-ff- t 
9) 

t E 
&I 3 

m =0 312 -a+n. 
F,(2-a, --a+,;$ )J 

2 
(2.4) 
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-. (2 -&)jd 
SC& xl = jf: 

a rs+j)2j! 

TO cafcu~ate &(r) for bcrc min @“8, a), we use (1.10) and the formula 

scp; x) = r@mjx - W+3j3 - 1 f a)]-’ [lnx - JIFp) + $(P - 1 t a)] - 

I 
c- z @- If Of 

i-at #=I t&j/ 
(1 -x)~-l+Q~q@ - f +ff+j)-$@-- 1 +a)] 

(M < X < I) 

which may be derived from [S, furmuIa ?.41.5]. We have 

I*(r) = - 
(b/r)3-2a 

KfJl-@- i> 

tw 

jcru-1 

w-$1 1 2-“b <rCfi 

it is obvious that the shear stresses vanish as zero: ~6 (r, O)-+ - V~L ~8~ + I---+ 0. 
It can be shown that the contact stresses are continuous at b. 

By (2.7) and the equality ~@(b -1-0, 0) = --pxl(b -t-O), the shear stresses are also continuous 
across the friction/adhesion boundary. 

In probfem lb, the conditions I.,, = 0, OK the relations (1.11) that follow from it, imply the 
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FIG. 2. 

equalities a, (a, 0) = r,+ (a, 0) = 0. Indeed, letting r+ a - 0 in (2. l), (2.3) and (2.4) and taking (1.7) 
into account, we obtain x1 (a - 0) = 0. 

3. THE DEPENDENCE OF A ON THE PUNCH PROFILE 

Let us consider problem Z,, which is concerned with a punch whose profile is described by the 
function f(x) = A lx In ( w h ere A is a given positive constant with the dimensions of X-“+I), pressed 
down on the half-plane 1 x ( < CO, y = 0, by a symmetrically applied vertical force P (Fig. 2). The 
region of contact (Ix 1 <a, y = 0) is divided into an adhesive region (Ix ( < b) and a region of 
Coulomb friction (b < 1 x ( <a). The positions of the points a are determined a posteriori. 

It was stated in [3] that the quantity A = b/u is independent of A, n and P, depending only on p 
and V; i.e. in a punch with profilef(x) = Alxl”(lAj < CO, n 2 1) or in the problem Z, of a flat-faced 
punch (n = 0) we will have the same A. This conclusion is incorrect. 

Let p(x) = a,,(~, 0), q(x) = T~~(x, 0). Then, using results obtained in [l], we obtain (for problem 
Z,) a system of two singular integral equations 

0 , O<x<b 

h,X n-1 
, O<x<a 

where A,, = nv;‘A. In the frictional region p(x) and q(x) satisfy the condition 

q(x)+crp(x)=O (b<x<a) 

but at x = a, as the punch profile is smooth in the neighbourhood of that point, we have 

p(a) = q(a) = 0 

As the punch is in equilibrium 

The differential operator 

a P 
Jp(x)dx = - - 
0 2 

d 
n-l x d 

nx=--- - n n dx 

(see [3]) makes the inhomogeneous system (3.1) homogeneous 

K_&(X) + O<x<b 

-K-&,(X) + + UP, Z!.- = 0, 
t’ - xl 

O<x<a 

40 (x) + wpo (x) = 0, (b < x < a) 

PO(X) = d,&(x), qo (x) = dn, q(x) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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where, by (3.2), P(X) and q(x) are expressed as follows in terms ofpo(x) and qo(x) 

lJ P” (0 
P(X) = ..P-’ J - dt, 

= 4,(f) 
n q(x) = d-l J- - dt 

x t x r n (3.6) 

In view of (3.3) and (3.6), we obtain 

(3.7) 

Thus, the system of integral equations (3.4), with conditions (3.5) and (3.7), is equivalent to the 
corresponding problem for a flat-faced punch, provided that, in addition 

b cr,w+PPp,m 
q(x) + pp(x) = nx- ’ j- dr 

x r" 
(3.8) 

and to ensure the validity of the condition q(b) + pp (b) = 0, it is sufficient to require integrability of the 
function qo(x) + ppo(x) in the vicinity of the point x = b. 

The positions of b and a are defined by two equivalence conditions for systems (3.1) and (3.4). To determine 
these conditions, we consider the functions x1(x) = PO(X) E H* [0, a) and x2(x) = qo(x) + ppo(n) E H* [0, b), 
where H*[O, c) is the space of functions that satisfy a Holder condition in the interval [0, c) and have an 
integrable singularity at x = c. Then x1 (x), x2(x) is a solution of the system 

O<x<b 

, O<x<a (3.9) 

Extending system (3.9) to a semi-infinite interval by means of the functions +I (x), &(x) (supp $t (x) c (b, 
a), supp&(x)C(a, a)), applying the Mellin transformation and using the notation (1.3), we obtain the 
homogeneous Riemann matrix problem (1.4) (v. = 0) whose solution is known [2]. Formulae for the solution 
are also obtained from (1.5) by setting v. = 0; they may be written as 

x1 (as) = Cx:(r), x, (b7) = Cx:(7). C=Pa-‘C’ 

(the asterisks mark quantities that are independent of a and P). Then the functions p (x) and q (x) are given by 

p(aE) = CpzW, 

We require that the following two conditions hold 

N,:(E) = -L&E) + 

Nl(r, )PC+ = -A,anEF-’ 

(3.10) 

(to, & are arbitrary points in the intervals (0, A) and (0, l), respectively). Then systems (3.1) and (3.4) will be 
equivalent. The first condition of (3.10) is a transcendental equation for A; A is obviously a function of the 
parameters V, p and n, and, in problems with condition (3.2), is independent of P, E and A. To determine a, we 
use the second condition of (3.10) 

a = [-PC”ff-“A~‘N~(E,)ll’” 

It was assumed in [3] that the shear displacements in the adhesive region were not zero but a polynomial 

au 
sx 

=M, lx In-*, Ixlib, M,,=nv;‘M (3.11) 
y=o 
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FIG. 3. 

where the constant M is to be determined from condition (3.2). However, this condition is automatically 
satisfied thanks to (3.6). The condition for systems (3.1) and (3.4) to be equivalent, corresponding to the case 
(3.11), makes it impossible to choose M so that, for any n, A is the same for problems 2, and 2,. Thus, if 
condition (3.11) holds then, a fortiori, A depends on the punch profile. 

4. THE CONTACT PROBLEM FOR A WEDGE IN THE PRESENCE OF FRICTION AND 

COHESION 

Let us consider a flat-faced punch (0 <r<a, 8= 0) pressed into an elastic wedge (O< r< ~0, 
--o< 13<0) by a vertical force P, a moment A4 and a horizontal force T (Fig. 3). The region of 
contact consists of an adhesive region (b, < r< b,) and frictional regions (0 < r < bl and b2 < r< a); 
the boundary 8 = --w is stress-free 

0=0: Ug =6, +yr, O<r<a; u,=tit, b1 <r<bz. 

T,O -pae=O, O<r,<b,; r,e +ptoe=O, 62 <r<a 

r,fj = ae = 0, a<r<m 

e=-64 ue =rre =o, O<r<= 

(y is the angle of rotation of the punch). If the conditions 

7 ue (r, 0)dr = -P, 
0 

/rro (r, 0)dr = -T, [a~ (r, 0)rdr = -M (4.1) 

are satisfied, the punch will be in equilibrium. Consider the following functions and their Mellin 
transforms 

x1 (r) = (r,e - cc00 )e =a, x2(r)= (r,e +we )e =O 

au, s,c;> =+ 7 
1 sue 

(r, 01, J/2(r) =- - 
Y. ar (rr 0) 

II Xjs, J/is II = [II Xj(‘>, tij(r)II rSdr 

The functions (criS and xjs satisfy the relationships 

21r~l,=f2l(S)Xrs+~22(S)X2s, 342s=~11(S)x1s+~12(S)x?s 

Ilj(S)= -_C(K_ + ~+[2d(s)]-’ [(-l)i-‘(sin 2~s +S Sin 20) + 2W(S - l)Sin2w] 

12j(S)=(-l.)iK_ +~+[2d(s)]-~[-~ sin 26.1~ t&v sin 2w - 2(-l)jS(S + l)Sin2Cd] 

Putting AI = blla, A2 = b21a 
1 l/h, 

a;(s) = _f I rsdr, *T(i) = / x1 (b, r) rSdr 
A, 1 

@y(s) = j! xz(b2r)rsdr, 
OD 

@l(s) = 2~ 1 ti2 (ar) rSdr 
0 1 

(4.2) 
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@i(s) = 2~ _/ $, (b, r) rsdr, @i(s) = 211 J G1 (bzr) rSdr 
1 

I(s) = 11 I (s,4,2(s) - 112 (sJl2 1 (s’j = W(sj[d(s)l -’ 

e(S)=K: -s’sin’w-K sin2ws 

(4.3) 

we obtain a Riemann matrix problem [2] which, after factorizing the functions 

/Q(s) = LJ(s)Lj(s) x; (s)[Xj(s)] -r ) s E r ( j = 0, 1,2) 

ko 0) = II 1 (s’), t,(s) = I(S)[ll.(S)] -1 (n = 1) 2) 

Lo+(s) = 
K,,r(-6s) r(1 tssj K+ 

q1 - (11 - 6s) ’ 
L&s) = 

r(0lt6s) ’ 
so =- 

= ii ’ Ko sin 7rc1 

L:(s) = - 
Klr(-6S)r(l -C&S) 

L;(s) = 
r(l + 6s)r(0I t 6~) 211K 

r2(Ji -- hj ’ r2(34 t6sj ’ 

K, = - 

Ko 

L:(s) = 
K 1 r(-&)r(a - 6s) 

L;(s) = 
r(l tb)r(i -atas) 

-- 
r2(35-6sj ’ r2(?4 + 6~) 

X,(s) = exp (- l I 
In ky (s) 
- ds), 

2ni r s - 2 
ind ky (s) = 0 

k;(s) = E 1 (s’), k;(s) = l’(s)[l$‘,, (s)] -’ (n = 1, 2) 

lPn(S) = [-pK_ t (-l)“K+ Ctg b~]-‘r~,(S), l’(S)= - (2C(K)-‘tg2d(S) 

may be rewritten in the form 

-[L;(s)]-‘x;(s)@;(s) = L;(s) x&p:(~) + &/xIy+ ‘II &j[l(sjy-’ x 

x L;(s)x:(s)@;(s) - hy- ‘12~(s)[l(s)]-‘L;(s)x:(s) [@qsj+(s + I)-‘Co] (4.4) 

Let ~7,: (j = 0, 1, . . .) denote the poles of 1r2(s)[1t1 (s)]-’ in D-, and UT (j = 0, 1, . . .) those of 
Izl(s) [ltt(s)]-’ (ai+ ED+). All the numbers ui+ are real. Let Sj (j = 0, 1, . . .) be the (complex- 
valued) roots of the function e(s) defined in (4.3). Then ltl (s) [I(S)]-’ has poles in D- at the points 
s = Sj, and the functions 1t2(s) [l(s)]-l, &(s) [I(S)]-’ have poles in Df at the points s = s, . 
Following the scheme of [2], we define 

9:(i) = z - , @i(s) = 2 - 
A; 4 

j = 0 S - UiT j=O STSj 

(A,?, B,? are coefficients, as yet unknown), and we obtain a solution of problem (4.4) 

@i(i) = J!!m 
MS) 

Q2, (i) - x;+ 1 
11 zb)Xi(d 
11 1 w m 

a,(s) + A:+* 
&2(sjLi (sj 

l(s) x;(s) 
Q,(s) 

s+l 

*t(S) = Xi’- ‘*i(i), 
W) 

@i(s) = - 
L C(s’j 

Q,(s) - ($ 1 

11 ,($L;(s) 

I(s) X?‘(s) 
W) 

O&j = - (s t 1j-’ co t L,+(s) x0’(s) 52, (ij, a;(s) = -L;(~)tx~(~)l -I W) (4.5) 

~,+(~j = ~1+(s;j x:(s)Q, (s) + h;S- l I2 I (ijI4 1 (ijr’ L&V&WI 01 
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n,(s) = (s + l)-rY&J + cr -t: q:(i) 

an,(s)=-(s+ 1)-l VIC, + cz + *;(s’) + q,*(s), s&(s) = -(s t l)%& + q;(s) 

Vg = [to’(-1)x&-l)l -I 

1 
IJ, = 

lim 12 t(s) 

x:(-l)I$(-1) s + - 1 I1 l(i) 
9 v2 =Jl(-l)Xi(-1) lim 122is) 

s-, -1 I(s) 

(if wf 72 or of arcctgp, then v1 = 0; if sin*w# 1 - V, then y = 0); Cr , C2 are arbitrary constants. 
To determine the boundaries of the adhesive and frictional regions, we determine the stress 

intensity factors 

K2 = lim 
r+b,-0 

(& - r)’ -“x2(r) = Czb: --Q [r(01)6~]- 

and stipulate that Kr = 0, K2 = 0. Then 

c, =o, v~C’,, -B, =0 

We express the coefficients A:, Bz in the form 

A; = i CkA;k, B; = ii C,B:, 
k=O k=O 

Then a necessary and sufficient condition for the functions @i+(s) (j = 1,2, 3) defined in (4.5) to 
be analytic in D’ is that 

(n=O,l,...; k=O,l) 
(4.6) 

(conditions (4.6) correspond to an infinite algebraic system of normal type). 
Assuming that the three equilibrium conditions (4.1) are satisfied, we obtain a formula for the 

angle of rotation of the punch 

y= -v,a-‘PF l[ao,F, +ao1(h - Fo)I-’ (4.7) 

and a system of two transcendental equations for AI and A2 

fo[a#r +air(r% - Fo)I = [ aoo F 1 iaol(h - F01lfi (i= 1,2) 

We have used the following notation here and in (4.7) 
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do = 
2w + sin 2w t 2i.L sin2 u &-(1) x;(o) 

-2w - sin 2w + 2@sin2 0 ’ 
g0 = L,(1) , ej = - 

&m 
(i=O,l) 

w;, = E- 
A;k 

40 
=- 

j=o m-of ) 
5% 

I j=O Sj 

We will now determine the singularities of the functions rfi, uo, &t,l&, dueh3r as r-0 (0 = 0). 
Using (4.2), (4.3) and (4.5), we obtain 

By Cauchy’s Theorem, in view of (4.6), we obtain 

(4.8) 

where pz (n = 0, 1, . . .) are the roots of Z12(s) in D+. Similarly, we have 

Thus, the contact stresses and radial derivatives of the displacements behave like ra as r-+0 
(V = -PO’ - 1, j?$ has th e argest real part of all roots @n+). 1 

5. NUMERICAL IMPLEMENTATION 

Problems la and lb have been worked out numerically for v = 0.3 and E/P = 1. Below we present the 
computed values of A x lo3 for a flat-faced punch, for different values of p (the figures in the second row are 
taken from [l]; those in the third were computed specially for this paper, for problem la with 2y = T) 

:x lo3 0.1 36.9 0.2 366 0.3 69.5 0.4 868 0.5 942 0.6 974 0.7 989 993 0.8 

Ax 10” 36.5 360 689 865 941 973 988 992 

(these figures are independent of E/P). Table 1 lists values of A X ld for some values of p and ya = n- y with 
EIP = 1, in problem la. For problem lb, as remarked in Sec. 3, h is independent of the angle y and quotient 
EIP, depending only on p and Y. Here are the values of h and a for a few values of F 

/.l 0.1 0.3 0.5 0.7 0.9 1.1 1.3 
A 3.18 x 1O-4 0.109 0.289 0.413 0.497 0.556 0.601 
A 10.27 10.03 9.84 9.70 9.59 9.50 9.43 

(the lower row corresponds to the case ye = 3”). as well as a for fixed p = 0.3 and a few values of yr, 

Yo 1” 5” 10” 15” 
a 50.28 10.03 4.98 3.28 

Figure 4 shows plots of the contact stresses for p = 0.3. Curves 1 and 1” correspond to normal stresses 
--P-l q(ar, 0) in problem la with y. = 5’ and y,, = 0 (a flat-faced punch), and curves 2 and 2” correspond to 
stresses P-l TV (ar, 0) in the same cases. In problem lb, for the case ya = 5”, plots of the stresses -P-r o0 (r, 0) 
and P-‘rti(rr 0) are shown in Fig. 5, where curves 1 and 2 correspond to normal and shear stresses with 
y = 0.3, curves 1” and 2” correspond to the same stresses with /* = 0.7. Plots of the functions uY and rx,(poj.)-’ 
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FIG. 4. 

FIG. 5. 

TABLE 1 

70 p=o.1 0.3 I 0.5 I 0.7 0.9 
I I i 

1” 29.0 662 930 986 -- 
5” 11.4 558 874 966 992 
10” 4.09 442 779 917 970 
lSO 1.91 345 676 840 922 

for y = 0 in problem la with y. = 0 (flat punch), v = 0, p = 0.3653 (in which case A = 0.3) are in good 
agreement with the corresponding curves in [3], which were based on numerical computations. 
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